Copied to
clipboard

?

G = C42.88D10order 320 = 26·5

88th non-split extension by C42 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.88D10, (C2×C20)⋊4Q8, C20⋊Q846C2, (C2×C4)⋊7Dic10, C20.68(C2×Q8), C4⋊C4.266D10, (C4×Dic10)⋊6C2, (C4×C20).21C22, (C2×C10).61C24, C22⋊C4.89D10, C4.Dic1045C2, C4.33(C2×Dic10), C10.10(C22×Q8), (C2×C20).140C23, Dic5.7(C4○D4), (C22×C4).362D10, C42⋊C2.11D5, C22.6(C2×Dic10), C22.94(C23×D5), C4⋊Dic5.360C22, C2.12(C22×Dic10), C23.150(C22×D5), C23.D5.91C22, (C22×C10).131C23, (C22×C20).222C22, Dic5.14D4.5C2, C52(C23.37C23), (C4×Dic5).280C22, (C2×Dic5).203C23, (C2×Dic10).236C22, C10.D4.105C22, C23.21D10.22C2, (C22×Dic5).237C22, C2.8(D5×C4○D4), (C2×C10).12(C2×Q8), (C2×C4×Dic5).14C2, C10.130(C2×C4○D4), (C5×C4⋊C4).302C22, (C2×C4).574(C22×D5), (C5×C42⋊C2).12C2, (C5×C22⋊C4).98C22, SmallGroup(320,1189)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C42.88D10
C1C5C10C2×C10C2×Dic5C22×Dic5C2×C4×Dic5 — C42.88D10
C5C2×C10 — C42.88D10

Subgroups: 638 in 222 conjugacy classes, 115 normal (21 characteristic)
C1, C2, C2 [×2], C2 [×2], C4 [×4], C4 [×14], C22, C22 [×2], C22 [×2], C5, C2×C4 [×2], C2×C4 [×8], C2×C4 [×12], Q8 [×8], C23, C10, C10 [×2], C10 [×2], C42 [×2], C42 [×6], C22⋊C4 [×2], C22⋊C4 [×2], C4⋊C4 [×2], C4⋊C4 [×14], C22×C4, C22×C4 [×2], C2×Q8 [×4], Dic5 [×4], Dic5 [×6], C20 [×4], C20 [×4], C2×C10, C2×C10 [×2], C2×C10 [×2], C2×C42, C42⋊C2, C42⋊C2, C4×Q8 [×4], C22⋊Q8 [×4], C42.C2 [×2], C4⋊Q8 [×2], Dic10 [×8], C2×Dic5 [×8], C2×Dic5 [×4], C2×C20 [×2], C2×C20 [×8], C22×C10, C23.37C23, C4×Dic5 [×2], C4×Dic5 [×4], C10.D4 [×8], C4⋊Dic5 [×6], C23.D5 [×2], C4×C20 [×2], C5×C22⋊C4 [×2], C5×C4⋊C4 [×2], C2×Dic10 [×4], C22×Dic5 [×2], C22×C20, C4×Dic10 [×4], Dic5.14D4 [×4], C20⋊Q8 [×2], C4.Dic10 [×2], C2×C4×Dic5, C23.21D10, C5×C42⋊C2, C42.88D10

Quotients:
C1, C2 [×15], C22 [×35], Q8 [×4], C23 [×15], D5, C2×Q8 [×6], C4○D4 [×4], C24, D10 [×7], C22×Q8, C2×C4○D4 [×2], Dic10 [×4], C22×D5 [×7], C23.37C23, C2×Dic10 [×6], C23×D5, C22×Dic10, D5×C4○D4 [×2], C42.88D10

Generators and relations
 G = < a,b,c,d | a4=b4=c10=1, d2=a2b2, ab=ba, cac-1=ab2, dad-1=a-1, bc=cb, bd=db, dcd-1=c-1 >

Smallest permutation representation
On 160 points
Generators in S160
(1 95 62 140)(2 91 63 136)(3 97 64 132)(4 93 65 138)(5 99 61 134)(6 86 11 118)(7 82 12 114)(8 88 13 120)(9 84 14 116)(10 90 15 112)(16 113 68 81)(17 119 69 87)(18 115 70 83)(19 111 66 89)(20 117 67 85)(21 143 26 158)(22 149 27 154)(23 145 28 160)(24 141 29 156)(25 147 30 152)(31 94 39 139)(32 100 40 135)(33 96 36 131)(34 92 37 137)(35 98 38 133)(41 101 56 130)(42 107 57 126)(43 103 58 122)(44 109 59 128)(45 105 60 124)(46 106 51 125)(47 102 52 121)(48 108 53 127)(49 104 54 123)(50 110 55 129)(71 144 79 159)(72 150 80 155)(73 146 76 151)(74 142 77 157)(75 148 78 153)
(1 72 32 23)(2 73 33 24)(3 74 34 25)(4 75 35 21)(5 71 31 22)(6 41 68 46)(7 42 69 47)(8 43 70 48)(9 44 66 49)(10 45 67 50)(11 56 16 51)(12 57 17 52)(13 58 18 53)(14 59 19 54)(15 60 20 55)(26 65 78 38)(27 61 79 39)(28 62 80 40)(29 63 76 36)(30 64 77 37)(81 106 86 101)(82 107 87 102)(83 108 88 103)(84 109 89 104)(85 110 90 105)(91 146 96 141)(92 147 97 142)(93 148 98 143)(94 149 99 144)(95 150 100 145)(111 123 116 128)(112 124 117 129)(113 125 118 130)(114 126 119 121)(115 127 120 122)(131 156 136 151)(132 157 137 152)(133 158 138 153)(134 159 139 154)(135 160 140 155)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 66 40 14)(2 70 36 13)(3 69 37 12)(4 68 38 11)(5 67 39 15)(6 65 16 35)(7 64 17 34)(8 63 18 33)(9 62 19 32)(10 61 20 31)(21 41 78 51)(22 45 79 55)(23 44 80 54)(24 43 76 53)(25 42 77 52)(26 56 75 46)(27 60 71 50)(28 59 72 49)(29 58 73 48)(30 57 74 47)(81 98 118 138)(82 97 119 137)(83 96 120 136)(84 95 111 135)(85 94 112 134)(86 93 113 133)(87 92 114 132)(88 91 115 131)(89 100 116 140)(90 99 117 139)(101 148 125 158)(102 147 126 157)(103 146 127 156)(104 145 128 155)(105 144 129 154)(106 143 130 153)(107 142 121 152)(108 141 122 151)(109 150 123 160)(110 149 124 159)

G:=sub<Sym(160)| (1,95,62,140)(2,91,63,136)(3,97,64,132)(4,93,65,138)(5,99,61,134)(6,86,11,118)(7,82,12,114)(8,88,13,120)(9,84,14,116)(10,90,15,112)(16,113,68,81)(17,119,69,87)(18,115,70,83)(19,111,66,89)(20,117,67,85)(21,143,26,158)(22,149,27,154)(23,145,28,160)(24,141,29,156)(25,147,30,152)(31,94,39,139)(32,100,40,135)(33,96,36,131)(34,92,37,137)(35,98,38,133)(41,101,56,130)(42,107,57,126)(43,103,58,122)(44,109,59,128)(45,105,60,124)(46,106,51,125)(47,102,52,121)(48,108,53,127)(49,104,54,123)(50,110,55,129)(71,144,79,159)(72,150,80,155)(73,146,76,151)(74,142,77,157)(75,148,78,153), (1,72,32,23)(2,73,33,24)(3,74,34,25)(4,75,35,21)(5,71,31,22)(6,41,68,46)(7,42,69,47)(8,43,70,48)(9,44,66,49)(10,45,67,50)(11,56,16,51)(12,57,17,52)(13,58,18,53)(14,59,19,54)(15,60,20,55)(26,65,78,38)(27,61,79,39)(28,62,80,40)(29,63,76,36)(30,64,77,37)(81,106,86,101)(82,107,87,102)(83,108,88,103)(84,109,89,104)(85,110,90,105)(91,146,96,141)(92,147,97,142)(93,148,98,143)(94,149,99,144)(95,150,100,145)(111,123,116,128)(112,124,117,129)(113,125,118,130)(114,126,119,121)(115,127,120,122)(131,156,136,151)(132,157,137,152)(133,158,138,153)(134,159,139,154)(135,160,140,155), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,66,40,14)(2,70,36,13)(3,69,37,12)(4,68,38,11)(5,67,39,15)(6,65,16,35)(7,64,17,34)(8,63,18,33)(9,62,19,32)(10,61,20,31)(21,41,78,51)(22,45,79,55)(23,44,80,54)(24,43,76,53)(25,42,77,52)(26,56,75,46)(27,60,71,50)(28,59,72,49)(29,58,73,48)(30,57,74,47)(81,98,118,138)(82,97,119,137)(83,96,120,136)(84,95,111,135)(85,94,112,134)(86,93,113,133)(87,92,114,132)(88,91,115,131)(89,100,116,140)(90,99,117,139)(101,148,125,158)(102,147,126,157)(103,146,127,156)(104,145,128,155)(105,144,129,154)(106,143,130,153)(107,142,121,152)(108,141,122,151)(109,150,123,160)(110,149,124,159)>;

G:=Group( (1,95,62,140)(2,91,63,136)(3,97,64,132)(4,93,65,138)(5,99,61,134)(6,86,11,118)(7,82,12,114)(8,88,13,120)(9,84,14,116)(10,90,15,112)(16,113,68,81)(17,119,69,87)(18,115,70,83)(19,111,66,89)(20,117,67,85)(21,143,26,158)(22,149,27,154)(23,145,28,160)(24,141,29,156)(25,147,30,152)(31,94,39,139)(32,100,40,135)(33,96,36,131)(34,92,37,137)(35,98,38,133)(41,101,56,130)(42,107,57,126)(43,103,58,122)(44,109,59,128)(45,105,60,124)(46,106,51,125)(47,102,52,121)(48,108,53,127)(49,104,54,123)(50,110,55,129)(71,144,79,159)(72,150,80,155)(73,146,76,151)(74,142,77,157)(75,148,78,153), (1,72,32,23)(2,73,33,24)(3,74,34,25)(4,75,35,21)(5,71,31,22)(6,41,68,46)(7,42,69,47)(8,43,70,48)(9,44,66,49)(10,45,67,50)(11,56,16,51)(12,57,17,52)(13,58,18,53)(14,59,19,54)(15,60,20,55)(26,65,78,38)(27,61,79,39)(28,62,80,40)(29,63,76,36)(30,64,77,37)(81,106,86,101)(82,107,87,102)(83,108,88,103)(84,109,89,104)(85,110,90,105)(91,146,96,141)(92,147,97,142)(93,148,98,143)(94,149,99,144)(95,150,100,145)(111,123,116,128)(112,124,117,129)(113,125,118,130)(114,126,119,121)(115,127,120,122)(131,156,136,151)(132,157,137,152)(133,158,138,153)(134,159,139,154)(135,160,140,155), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,66,40,14)(2,70,36,13)(3,69,37,12)(4,68,38,11)(5,67,39,15)(6,65,16,35)(7,64,17,34)(8,63,18,33)(9,62,19,32)(10,61,20,31)(21,41,78,51)(22,45,79,55)(23,44,80,54)(24,43,76,53)(25,42,77,52)(26,56,75,46)(27,60,71,50)(28,59,72,49)(29,58,73,48)(30,57,74,47)(81,98,118,138)(82,97,119,137)(83,96,120,136)(84,95,111,135)(85,94,112,134)(86,93,113,133)(87,92,114,132)(88,91,115,131)(89,100,116,140)(90,99,117,139)(101,148,125,158)(102,147,126,157)(103,146,127,156)(104,145,128,155)(105,144,129,154)(106,143,130,153)(107,142,121,152)(108,141,122,151)(109,150,123,160)(110,149,124,159) );

G=PermutationGroup([(1,95,62,140),(2,91,63,136),(3,97,64,132),(4,93,65,138),(5,99,61,134),(6,86,11,118),(7,82,12,114),(8,88,13,120),(9,84,14,116),(10,90,15,112),(16,113,68,81),(17,119,69,87),(18,115,70,83),(19,111,66,89),(20,117,67,85),(21,143,26,158),(22,149,27,154),(23,145,28,160),(24,141,29,156),(25,147,30,152),(31,94,39,139),(32,100,40,135),(33,96,36,131),(34,92,37,137),(35,98,38,133),(41,101,56,130),(42,107,57,126),(43,103,58,122),(44,109,59,128),(45,105,60,124),(46,106,51,125),(47,102,52,121),(48,108,53,127),(49,104,54,123),(50,110,55,129),(71,144,79,159),(72,150,80,155),(73,146,76,151),(74,142,77,157),(75,148,78,153)], [(1,72,32,23),(2,73,33,24),(3,74,34,25),(4,75,35,21),(5,71,31,22),(6,41,68,46),(7,42,69,47),(8,43,70,48),(9,44,66,49),(10,45,67,50),(11,56,16,51),(12,57,17,52),(13,58,18,53),(14,59,19,54),(15,60,20,55),(26,65,78,38),(27,61,79,39),(28,62,80,40),(29,63,76,36),(30,64,77,37),(81,106,86,101),(82,107,87,102),(83,108,88,103),(84,109,89,104),(85,110,90,105),(91,146,96,141),(92,147,97,142),(93,148,98,143),(94,149,99,144),(95,150,100,145),(111,123,116,128),(112,124,117,129),(113,125,118,130),(114,126,119,121),(115,127,120,122),(131,156,136,151),(132,157,137,152),(133,158,138,153),(134,159,139,154),(135,160,140,155)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,66,40,14),(2,70,36,13),(3,69,37,12),(4,68,38,11),(5,67,39,15),(6,65,16,35),(7,64,17,34),(8,63,18,33),(9,62,19,32),(10,61,20,31),(21,41,78,51),(22,45,79,55),(23,44,80,54),(24,43,76,53),(25,42,77,52),(26,56,75,46),(27,60,71,50),(28,59,72,49),(29,58,73,48),(30,57,74,47),(81,98,118,138),(82,97,119,137),(83,96,120,136),(84,95,111,135),(85,94,112,134),(86,93,113,133),(87,92,114,132),(88,91,115,131),(89,100,116,140),(90,99,117,139),(101,148,125,158),(102,147,126,157),(103,146,127,156),(104,145,128,155),(105,144,129,154),(106,143,130,153),(107,142,121,152),(108,141,122,151),(109,150,123,160),(110,149,124,159)])

Matrix representation G ⊆ GL4(𝔽41) generated by

04000
1000
003032
00911
,
32000
03200
00400
00040
,
1000
04000
0077
003440
,
1000
04000
002925
002712
G:=sub<GL(4,GF(41))| [0,1,0,0,40,0,0,0,0,0,30,9,0,0,32,11],[32,0,0,0,0,32,0,0,0,0,40,0,0,0,0,40],[1,0,0,0,0,40,0,0,0,0,7,34,0,0,7,40],[1,0,0,0,0,40,0,0,0,0,29,27,0,0,25,12] >;

68 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H4I4J4K···4R4S4T4U4V5A5B10A···10F10G10H10I10J20A···20H20I···20AB
order12222244444444444···444445510···101010101020···2020···20
size111122111122444410···1020202020222···244442···24···4

68 irreducible representations

dim11111111222222224
type++++++++-+++++-
imageC1C2C2C2C2C2C2C2Q8D5C4○D4D10D10D10D10Dic10D5×C4○D4
kernelC42.88D10C4×Dic10Dic5.14D4C20⋊Q8C4.Dic10C2×C4×Dic5C23.21D10C5×C42⋊C2C2×C20C42⋊C2Dic5C42C22⋊C4C4⋊C4C22×C4C2×C4C2
# reps144221114284442168

In GAP, Magma, Sage, TeX

C_4^2._{88}D_{10}
% in TeX

G:=Group("C4^2.88D10");
// GroupNames label

G:=SmallGroup(320,1189);
// by ID

G=gap.SmallGroup(320,1189);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,184,675,570,80,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^10=1,d^2=a^2*b^2,a*b=b*a,c*a*c^-1=a*b^2,d*a*d^-1=a^-1,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽